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Abstract

We present the XXX submission for NIST SRE24 Audio-Visual
together with key insights we gained from this evaluation. In
the audio fixed conditions, the system utilized Res2Net50 and
ResNet100 embeddings, while the open condition addition-
ally included an ECAPA-TDNN with a Multilingual Wav2Vec2
front-end, which emerged as the best single system. The au-
dio back-ends consisted of either PLDA adapted to SRE24 Dev
or a mixture of PLDA models tuned to different subcondi-
tions. To avoid overfitting, we optimized back-end hyperpa-
rameters using two-fold cross-validation. For the visual con-
ditions, we leveraged pre-trained ResNet100 face embeddings.
Agglomerative clustering grouped speaker and face identities
in multi-speaker test videos. The primary audio fixed system
achieved Act. Cp=0.574, while the open condition reached
Cp=0.366 on SRE24 Eval. The visual system had Cp=0.169,
while the Audio-Visual fusion significantly improved perfor-
mance, achieving Cp=0.101 (fixed) and Cp=0.087 (open).
Index Terms: speaker verification, nist-sre, evaluation, X-
vector, PLDA, audio-visual

1. Introduction

The National Institute of Standards and Technology (NIST) pe-
riodically organizes speaker recognition evaluations (SRE) to
benchmark the latest advancements in the field [1]. These eval-
uations center on the speaker detection task, i.e., determining
whether the speaker in a test recording matches the speaker in
one or more enrollment recordings. Over time, SRE has pro-
gressed from telephone speech [2], to far-field mics [3, 4], then
to non-English telephone speech [5, 6, 7], and multi-modal eval-
uations on internet videos [6, 7]. NIST SRE21 [8] featured
a multi-modal, multi-language, multi-source evaluation with
conversational telephone speech (CTS) and audio from videos
(AfV). It introduced new challenges, including cross-source
(CTS enrollment, AfV test) and cross-language trials (English,
Cantonese, and Mandarin). SRE24' follows the same setup
as SRE21, incorporating audio, visual (face recognition), and
multi-modal tracks. However, it introduces Tunisian-accented
Arabic, French, and English as target languages and allows
multi-speaker tests, necessitating speaker and face diarization.
This paper presents the XXX? submission to NIST SRE24,
highlighting key lessons learned. It is a collaboration be-
tween AAA and BBB, building on expertise gained from previ-
ous evaluations [9, 10, 11, 12]. For audio, we had pipelines
based on ResNet100 [13], Res2Net [14], and Multi-lingual
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Wav2Vec2-ECAPA-TDNN embeddings [15]. Since in-domain
data was unavailable for training, the embeddings were pro-
cessed using PLDA-based back-ends, carefully adapted to
20 in-domain development speakers through two-fold cross-
validation. To handle varying source and language conditions,
either condition-dependent preprocessing of embeddings or a
mixture of condition-dependent PLDA back-ends was applied.
For video, we utilized pre-trained face detectors and Subcenter-
ArcFace embeddings [16]. Additionally, we implemented a
method to discard low-quality face embeddings, improving our
results w.r.t. previous evaluations [11, 12].

2. Datasets
2.1. Train Datasets

The audio track proposed fixed and open training conditions.
The fixed condition data consisted of 638k recordings from
7,251 speakers combining NIST SRE-CTS Superset [17] (large-
scale CTS data compiling SRE 1996-2012), NIST SRE16
Eval [5] (CTS data from 101 Cantonese and 100 Tagalog speak-
ers) and NIST SRE21 [8] (CTS and AfV data from 183 bilin-
gual speakers of English, Mandarin, and Cantonese speakers).

For the open condition, we added VoxCeleb 1+2 [18]
(7365 AfV speakers), NIST SRE18 [6] (CTS data from 210
Tunisian Arabic speakers), NIST SRE19 [7] (CTS data from
196 Tunisian Arabic speakers) resulting in a total of 836k
recordings from 14,903 speakers. We also reused models from
NIST SRE21 fixed [12]. The SRE21 setup excluded SRE21,
SRE1S, and SRE19 from training and held out a few speakers
from SRE-CTS Superset and SRE16 for development.

For embedding training, we augmented speech on-the-fly
with MUSAN noise 3, AIR* reverberations, and simulated tele-
phone channel (only for 25% of AfV recordings). The tele-
phone simulation involved downsampling to 8 kHz, applying
a random bandpass filter (100-300 Hz low-cut, 3400-3700
Hz high-cut), encoding with A-law, mu-law, G723.1, or G726
codecs from torchaudio °, and upsampling back to 16 kHz. No
augmentation was used for back-end training.

2.2. Development datasets
We used two datasets for development:

e NIST SRE21 Dev: 20 speakers with 193k audio trials and
38.9k audio-visual trials used for performance monitoring
and calibration.

* NIST SRE24 Dev: Provided by the organizers, it includes 20
speakers with 1.17M audio trials and 258k audio-visual trials.

3http://www.openslr.org/resources/17
“http://www.openslr.org/resources/28
Shttps://pytorch.org/audio/



It was used for back-end adaptation, performance monitor-
ing, calibration, and fusion. We split it into two folds to tune
adaptation hyperparameters and prevent overfitting, ensuring
each fold had 10 gender-balanced speakers. When splitting,
inter-fold non-target trials had to be discarded, but target tri-
als remained unchanged from the original SRE24 Deyv.

3. Audio Systems
3.1. ResNet and ECAPA-TDNN

We used log-Mel-filter-bank features with 16 kHz inputs and
two configurations: Wideband (80 filters, 20-7600 Hz) and
Narrowband (64 filters, 64-3700 Hz). Features were short-
time mean-normalized over 3-seconds windows, with silence
removed using Kaldi energy VAD or provided time marks.

The embedding networks consisted of an encoder that ex-
tracts frame-level discriminant embeddings, a pooling mech-
anism, and a classification head [19]. As encoder, we used
ResNet100 [13] or Res2Net50 [14, 12]. We added frequency-
wise squeeze-excitation (FwWSE) [20] to the output of each
ResNet/Res2Net block. We used channel-wise attentive statis-
tics pooling [21], 192 dim. embeddings, and subcenter addi-
tive angular margin softmax loss [22] with two subcenters per
class. The networks were trained on 2-second chunks with a
margin of 0.2 using Adam optimizer, learning-rate=0.1, halved
every 40k(fixed)/50k(open) steps. After training, we performed
a large-margin (margin=0.3) fine-tuning on 4 second-chunks
(SGD optimizer, learning-rate=0.01 with cosine schedule with
a period of 2500 steps, momentum=0.9) where we added hard-
prototype mining (8 hard-prototypes) InterTop-K penalty [23]
margin (K=5, penalty=0.1). We had fixed/open and Narrow-
band/Wideband versions of these networks. Additionally, we
had a Res2Net50 (without FWSE) and an ECAPA-TDNN (4
layers of 2048 dim) from NIST SRE21 fixed condition [12].

3.2. Wav2Vec2+ECAPA-TDNN

This network uses Multilingual Wav2Vec2 Large, trained on
128 languages® [24], as a feature extractor. A weighted
average of its hidden layers is then fed into an ECAPA-
TDNN embedding network with three 1024-dim. Res2Net
layers, following [25]. This was trained in three stages.
First, the ECAPA-TDNN and weighted average coefficients
were trained with frozen Wav2Vec2 (margin=0.2, SGD opti-
mizer, learning rate=0.4 warmed up 3.5k steps and halved ev-
ery 10k steps, momentum=0.9, batch-size=1024) on 3-second
chunks for 68k steps. Second, it was fine-tuned by unfreez-
ing Wav2Vec2 (margin=0.2, InterTop-K penaly=0.1, learning
rate Se-5 warmed up for 6k steps and halved every 5k steps),
for 33k steps. Third, hard-prototype mining fine-tuning (mar-
gin=0.4, learning-rate=1.3 with cosine period 2.5k steps) was
applied on 8-second chunks for 2.5k steps. We conducted sev-
eral experiments to identify hyperparameters that would prevent
the network from overfitting to the out-of-domain training data
and perform well on the SRE24 dev data.

3.3. Language Identification

We automatically labeled the evaluation data and used ground
truth labels for other datasets. For the fixed condition, we
trained a FwWSE-ResNet34 LID network on the fixed data. For
the open, we used the Res2Net50 trained on the LRE22 Open
condition in [26]. Then, we trained Gaussian back-ends on
SRE24 dev, to classify between English, Arabic, and French.
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3.4. Speaker Diarization

We performed speaker diarization on AfV test recordings us-
ing Agglomerative Hierarchical Clustering (AHC) of speaker
embeddings. Each system performed its own diarization with
its corresponding embeddings computed from 3-second win-
dows (1-second shift). A PLDA adapted to SRE24 Dev gen-
erated the self-similarity matrix for AHC, with score calibra-
tion also trained on SRE24 Dev. The AHC stopping thresh-
old was set to 0, with a maximum limit of four speakers. Di-
arization time marks served as VAD to extract an embedding
per diarized speaker. The back-end, then, scored enrollment
embeddings against all detected speakers, selecting the highest-
scoring match.

Ultimately, speaker diarization improved the single sys-
tems’ Min DCF by less than 3% relative on the SRE24 Eval,
which was not a significant gain. Visual inspection of the videos
suggests that most contain only one or two speakers, with the
target speaker dominating the audio. This could explain the lim-
ited impact of diarization.

3.5. AAA Back-end

AAA back-end pipeline followed AAA-v2 in [12], apply-
ing condition-dependent centering, global PCA, Whitening,
length normalization, and PLDA adapted to in-domain speak-
ers (Mandarin(CMN)/Cantonese(YUE) for SRE21 and Ara-
bic(ARA)/French(FRA) for SRE24). First, we computed sep-
arate means and covariances for CTS and AfV, then adapted
per in-domain language. For SRE24, in-domain data included
SRE24 Dev, adding SRE18-19 in the open condition. This re-
sulted in six adapted means used for in-domain centering, while
the CTS and AfV means were used for out-of-domain. Next,
joint PCA dim. reduction/whitening was computed from the av-
erage adapted covariances, ensuring balanced condition weight-
ing. The same projection was applied to all data, followed by
length normalization. Finally, we trained an SPLDA model in
all out-of-domain data and adapted it to the in-domain data.

Back-end hyperparameters were tuned based on the test set
(SRE21 or SRE24) and training setup (SRE24 fixed/open or
SRE21). SRE24 Dev was split into two folds, with back-end
adaptation on one fold and evaluation on the other, yielding fold
scores. These tuned hyperparameters were then used to train a
final back-end on the full SRE24 Deyv, evaluated on SRE24 Dev
(cheat scores) and SRE24 Eval. This resulted in three back-
ends (fold0, foldl, and cheat). SRE24 back-end hyperparame-
ters were selected based on fold scores.

3.6. BBB Back-end

To handle diverse evaluation conditions, the BBB back-end
used an ensemble of scoring pipelines. Each included LDA
(150 dim.), global centering, whitening, length normalization,
and SPLDA (100 speaker dim.). The pipelines were adapted
to each of the following conditions: Gender (Male, Female),
Source (CTS, AfV), Active Speech Duration (Short (< 15s),
Long (> 15s)) and Language (ENG, ARA, or FRA). For
each pipeline, Centering/whitening and PLDA were first trained
on out-of-domain data and adapted to in-domain subsets. Fixed-
condition systems used NIST SRE21 Eval and SRE24 Deyv,
while open-condition added SRE18-CTS and SRE19-CTS.
The ensemble of scoring pipelines generated a 9-
dimensional score vector x. Target/non-target scores were mod-
eled by Gaussian mixture models with 2-3 components and
shared covariances. Trial scores were computed as the log-
s wr N (xipr,i,5:)
i “’N,iN(XQI»LN,iin)

likelihood ratio s = log g where weights



Table 1: Audio systems results on SRE21 Dev, SRE24 Dev Folds, SRE24 Dev Full (Cheating) and SRE24 Eval

System SRE21 Dev SRE24 Dev Folds SRE24 Dev Full SRE24 Eval
Idx Embed. BE EER MinCp ActCp EER MinCp ActCp EER MinCp ActCp EER MinCp ActCp
Single Fixed
1If  FwSE-Res2Net50-WB AAA 397 0.351 0.405 8.31 0.617 0.638  3.01 0.372 0.520 7.81 0.632 0.681
2f  FwSE-Res2Net50-NB AAA 295  0.297 0.404 8.26 0.641 0.655 330 0477 0593 794  0.631 0.652
3f  FwSE-ReNet100-WB AAA 418 0.369 0.402 7.55 0.556 0.568  2.25 0.322 0421 7.13 0.612 0.709
4f  FwSE-ResNet100-NB AAA 347 0.326 0.368 7.58 0.568 0.589 233 0.319 0.446 690  0.569 0.613
5f  FwSE-ReNet100-WB BBB 5.01 0.389 0959 1095  0.637 0.644  4.07 0.388 0544  9.69 0.716 0.784
6f  FwSE-ResNet100-NB BBB  4.87 0.366 0.934 9.41 0.643 0.657 3.76  0.403 0522  8.69  0.652 0.681
7f  FwSE-Res2Net50-WB BBB  6.89 0.453 1.715 8.78 0.594 0.601 342 0372 0.516  8.81 0.671 0.686
8f  FwSE-Res2Net50-NB BBB 7.78 0.459 0.716 9.29 0.632 0.646  3.78 0.419 0.577 838  0.626 0.628
Single Open
lo  W2V2-ECAPA-TDNN AAA 350 0.322 0.404 5.08 0.319 0321 256  0.244 0376 442 0377 0.457
20  FwSE-Res2Net50-WB-Std AAA 2,67 0.314 0.384 6.15 0.416 0419  1.61 0.198 0322 533 0.500 0.668
30  FwSE-Res2Net50-WB-NoCodec  AAA  2.64  0.312 0.384 6.13 0.428 0434 151 0.198 0321 526 0499 0.678
40  FwSE-ResNet100-WB AAA 355 0.379 0.423 6.27 0.419 0422 245 0.302 0.544  5.04  0.446 0.473
50  Res2Net50-SRE21 AAA 192 0.260 0.332 6.03 0.433 0434  2.68 0.331 0.599 529 0450 0.456
60  ECAPA-TDNN-SRE21 AAA 264  0.329 0.386 7.60 0.505 0.507 437 0.407 0.644  6.65 0.555 0.559
70  FwSE-ResNet100-WB BBB 1.73 0.267 0.640 9.35 0.611 0.639  4.13 0.329 0.489  6.63 0.577 0.623
80  W2V2-ECAPA-TDNN BBB 136  0.237 0.301 7.41 0.434 0439 175 0.210 0.243 581 0.483 0.484
Submissions Fixed
Primary: 3f+4f+5f+1f+6f 6.30 0.486 0490  1.49 0.237 0.408 596  0.547 0.574
Contrastive: 3f+4f+5f+1f+6f+2f+8f+7f 6.19 0.483 0.483 1.50  0.238 0413 593  0.542 0.568
Single: 3f 7.55 0.556 0.568 225 0.322 0421 7.13 0.612 0.709
Submissions Open
Primary: 1o+20+50+40+70 4.40 0.249 0252 122  0.161 0381  3.60 0.318 0.366
Contrastive: 10+20+50+40+70+60+30+80 4.31 0.251 0.254 1.36 0.170 0.399 3.67 0.324 0.387
Single: 1o 5.08 0.319 0321 256  0.244 0376 442 0377 0.457

means, and covariances were the Maximum Likelihood esti-
mates across the in-domain datasets.

3.7. Calibration and Fusion

As the BBB back-end (Sec. 3.6) produced well-calibrated
scores, no explicit calibration was applied. AAA trained a
condition-dependent calibration of scores s into log-likelihood
ratios as LLR = as + b + w; 1 4+ wlc where a and b are
condition-independent scaling and bias; 1, c,

1— language-match=Y __ |source-match=Y )
" |language-match=N " | source-match=N

are 1-hot vectors that indicate the language, and source condi-
tions; and w;, w,. are trainable weights representing condition-
dependent biases. This calibration improved Act Cp of individ-
ual systems on SRE24 Eval between 2 and 10% relative w.r.t.
condition independent.

We trained three calibrations on separate score sets (fold0,
foldl, cheat) but found they did not generalize well across sets.
Uncertain about the best calibration for evaluation, we imple-
mented a mixture of calibration functions. We trained a six-
component GMM on each non-calibrated score set, reserving
two Gaussians for target scores and four for non-targets. Denot-
ing these GMMs as p(s|fold0), p(s|foldl) and p(s|cheat), the
final score was LLR = 37, (0140 fola1 cheay P(t]8) f¢ (5) where s
is uncalibrated score, and f; are the calibration functions trained
on each score set. In the post-evaluation analysis, we found
that the SRE24 Dev cheat score distribution did not align with
Eval, and using the calibration mixture helped prevent exces-
sively high Actual Cp. However, the best approach would have
been calibrating solely on the fold scores. For instance, in the
Wav2Vec2+ECAPA-TDNN model, calibrating on cheat scores
resulted in an Act Cp of 1 on SRE24, while calibrating on folds
reduced it to 0.405, and the calibration mixture yielded 0.457.
Nonetheless, system fusion mitigated the calibration error, ulti-
mately ensuring no impact on the primary fusions.

A single fusion was trained on calibrated SRE24 Dev fold0
and foldl scores using a greedy fusion approach [9, 12]. First,
we calibrated all systems and selected the best one based on the
lowest actual cost. Then, we iteratively added systems, choos-
ing the best combination at each step. Fusion was trained at
P7 = 0.01 basing system selection on the average of ActDCF
at Pr = 0.01 and Py = 0.005.

3.8. Audio Submissions and Results

Table 1 summarizes the results for our single systems and sub-
missions under fixed and open conditions. The Primary and
Contrastive submissions indicate the systems included in the
fusion and the order in which they were selected by the greedy
algorithm. In the fixed condition, narrowband (NB) models out-
performed wideband (WB) models on average, with an Act Cp
of 0.63 compared to 0.7. Additionally, Res2Net performed bet-
ter than ResNet100, with an Act Cp of 0.66 versus 0.69. How-
ever, the best single system on Eval was ResNet100-NB, which
outperformed ResNet100-WB—the best on Dev—by 14% rel-
ative. Primary and Contrastive fusions further improved Act Cp
by 19% and 20%, respectively, mitigating single-system mis-
calibration and narrowing the gap between Min and Act Cp.

In the open condition, models trained on SRE21 performed
as well as or better than newer models. No significant dif-
ferences were observed between networks with and without
codec augmentation. Wav2Vec2+ECAPA-TDNN achieved the
best Min Cp, though some miscalibration placed it close to
ResNet100 and Res2Net50. The Primary fusion improved Act
Cp by 20% w.r.t. to the best single system. The primary open
system improved by 36% compared to the primary fixed sys-
tem. The fixed condition’s performance was hindered by the
limited availability of AfV data, which only came from SRE21.
This issue was resolved in the open condition by reintroducing
VoxCeleb data.



Table 2: Visual systems results on SRE21 and SRE24 Visual

SRE 24 Visual dev SRE 24 Visual Eval

EER MinCp ActCp EER MinCp ActCp EER MinCp ActCp EER MinCp ActCp

System SRE 21 Visual dev SRE21 Visual eval
Submissions

Primary 2.38 0.082 0.123  2.03 0.114
Contrastive 243 0.082 0.122  2.05 0.114

Single 235  0.079 0.122 210 0.114

0.119 147 0.050 0.105  2.07  0.149 0.169
0.119  1.56 0.063 0.106  2.14  0.152 0.170
0.119 1.56 0.058 0.105 2.10  0.152 0.170

4. Visual Systems
4.1. Pre-Trained Detector and Embedding Extractor

We sampled video frames at 3 frames-per-second (FPS), which
allowed us to compensate for the posterior removal of low-
quality frames. Face detection was performed using a pre-
trained RetinaFace R50” model with a decreasing detection
threshold, ensuring that faces are detected across varying qual-
ity levels. Detected faces were aligned with the facial landmarks
and, then, embedded using a ResNet-100 trained with Subcen-
ter ArcFace loss on the WiderFace dataset®.

4.2. Post-Processing for Low-Quality Image Removal

Improving over previous evaluations, we ensure that only high-
quality embeddings are retained by estimating a quality vector
(q = [deye, black-ratio]) for each detected face, improving rel-
ative improvements of around 7%. The Eye Distance dey. re-
flects the relative size of the detected face, with larger and well-
proportioned faces generally yielding higher values. First, we
discard faces with eye distance lower than the maximum eye
distance in the video divided by two.

The Black Pixel Ratio is the proportion of black pixels in
the cropped image. Pixels with near-zero intensity indicate oc-
clusions, poor lighting, or low exposure. A higher black pixel
ratio signifies lower quality. A second filtering stage selects
face embeddings with black-ratio < tu, by iteratively applying
thresholds ¢m, € {0.1,0.25,0.5} until the number of valid em-
beddings is larger than a minimum (set to 3). Typically, more
than 5 valid embeddings are found.

4.3. AHC+Cosine Back-end

We used cosine similarity as the metric for comparing face em-
beddings. The embeddings from the test video were clustered
using agglomerative clustering (AHC) with a stopping threshold
tanc, expecting the clusters to represent different individuals or
face orientations. Finally, we scored the enrollment embedding
against all test cluster centers and selected the maximum score.

4.4. Calibration and Fusion

Visual systems were calibrated and fused using linear logistic
regression on SRE21 Visual Dev+Eval and SRE24 Dev. The
single system used a single AHC+cosine back-end with tanc =
0.7 on ResNet100 face embeddings. The primary fusion com-
bined three back-ends with tauc € {0.5,0.6,0.7}, while the
contrastive included back-ends with tauc € {0.6,0.7}.

4.5. Visual Submissions and Results

Table 2 shows the results of the visual systems on SRE21 Visual
Dev and Eval, and SRE24 Visual Dev. The primary fusion did
not provide a significant gain over the single system.

5. Audio-Visual Submissions and Results

Assuming well-calibrated log-likelihood ratios and indepen-
dence between audio and visual modalities, the audio-visual

7https ://github.com/deepinsight/insightface/tree/master/model_zoo
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Table 3: Audio-Visual systems results on SRE24 Audio-Visual
System SRE24 AV Dev SRE24 AV Eval

EER MinCp ActCp EER MinCp ActCp

Fixed
Primary 0.59 0.014 0.030 1.13 0.100 0.101
Contrastive  0.59 0.015 0.030 1.13 0.100 0.100
Single 0.63 0.025 0.037 1.32 0.112 0.113
Open

Primary 0.27 0.010 0.061  0.83  0.086 0.087
Contrastive 026 0.011 0.069 0.84  0.087 0.089
Single 042  0.028 0.069 1.00  0.095 0.098

fusion log-likelihood ratio was obtained by summing the au-
dio and visual scores. The primary and contrastive submissions
fused their respective primary or contrastive audio systems with
the visual primary systems, while single submissions combined
audio and visual single systems. Table 3 presents the results.
In the fixed/open condition, AV Single improved Act Cp by
85%/82% over Audio-only Single and 34%/42% over Visual-
only Single. AV Primary improved Act Cp by 83%/82% over
Audio-only Primary and 40%/42% over Visual-only Primary.
These results highlight the complementarity of both modali-
ties. Despite the visual modality outperforming audio, video
still benefits from integrating audio information.

6. Conclusion and Discussion

We presented the XXX systems for NIST SRE24. For
the audio fixed conditions, the system used Res2Net50 and
ResNet100 embeddings, while the open condition also included
an ECAPA-TDNN with a Multilingual Wav2Vec2 front-end,
which was the best single system. The audio back-ends were
either PLDA adapted to SRE24 Dev or a mixture of PLDA
models adapted to different evaluation conditions. To prevent
overfitting, we used two-fold cross-validation to tune back-
end adaptation hyperparameters. For the visual conditions, we
employed pre-trained ResNet100 face embeddings with cosine
scoring back-ends. Agglomerative clustering was applied to
group speaker and face identities in multi-speaker test videos.

We learned several lessons in this evaluation. VoxCeleb
data remains essential for strong AfV performance, as its ab-
sence severely degraded fixed-condition results. Large-margin
and Wav2Vec2 fine-tuning tended to overfit to out-of-domain
data, reducing performance on Tunisian data compared to net-
works without fine-tuning. Optimizing fine-tuning hyperparam-
eters, such as learning rates and early stopping, required exten-
sive experimentation. Diarization had minimal impact on sys-
tem performance, while source- and language-dependent cal-
ibration proved beneficial. Cross-validation scores provided
more reliable calibration than cheating (full-dev trained) back-
end scores. Audio fusion improved results by approximately
20% and mitigated the effects of suboptimal calibration. For
visual systems, filtering out low-quality frames enhanced per-
formance. Audio-visual fusion yielded substantial gains, im-
proving over audio-only by 85% and video-only by 34-40%.
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