

Active Learning and Feature-Acquisition with LLMs and Humans

Prabhav Singh¹, Haojun Shi¹, Jason Eisner¹

Center for Language and Speech Processing Johns Hopkins University, Baltimore, MD, USA



ELEVATOR PITCH

An end-to-end transformer-based framework which will make it easier and cheaper to spin up LLM-based systems [1,2], tune, and evaluate them! Imagine you decide to use LLMs-as-a-judge for an annotation task (maybe **de-biased** with human annotations). **You** will have to **decide**:

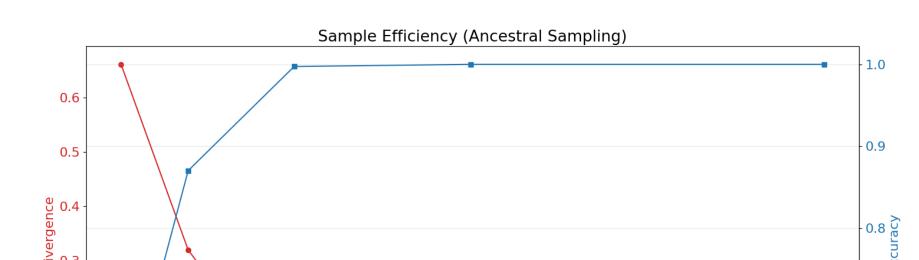
- Should (and how much of) the annotation be done by a human?
 - If the LLM is enough: Which LLM?
 - Is CoT needed? Or maybe prefix-tuning?
- Do we need intermediate supervision and **multi-tasking**?
 - Maybe we need intermediate task predictions?
 - Does adding more dimensions help? If so, which one's?
 - Absolute ratings or comparative ratings?
- Human annotations are **expensive**!
 - How **few** human annotations can we get away with?
 - How can the LLM better mimic the humans: can the LLM be de-biased?

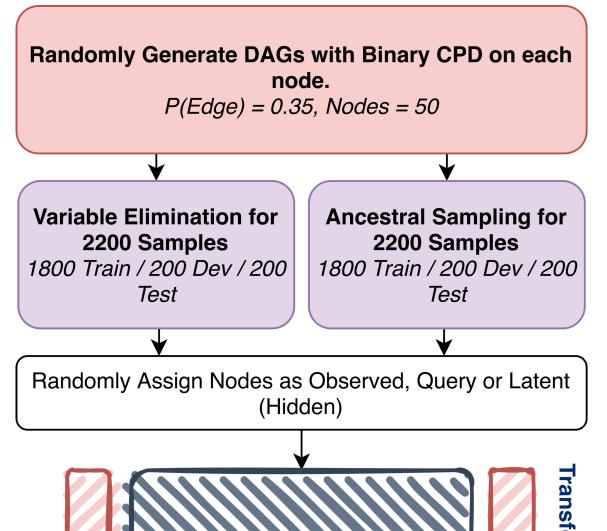
Case Study 2: Can It Do Graphical Inference

YES!

Table 2. Test Metrics with Variable Elimination

Metric	Query Variables	Latent Variables
RMSE	0.0219	0.0287
Pearson Correlation	0.9839	0.9921
Spearman Correlation	0.9747	0.9835





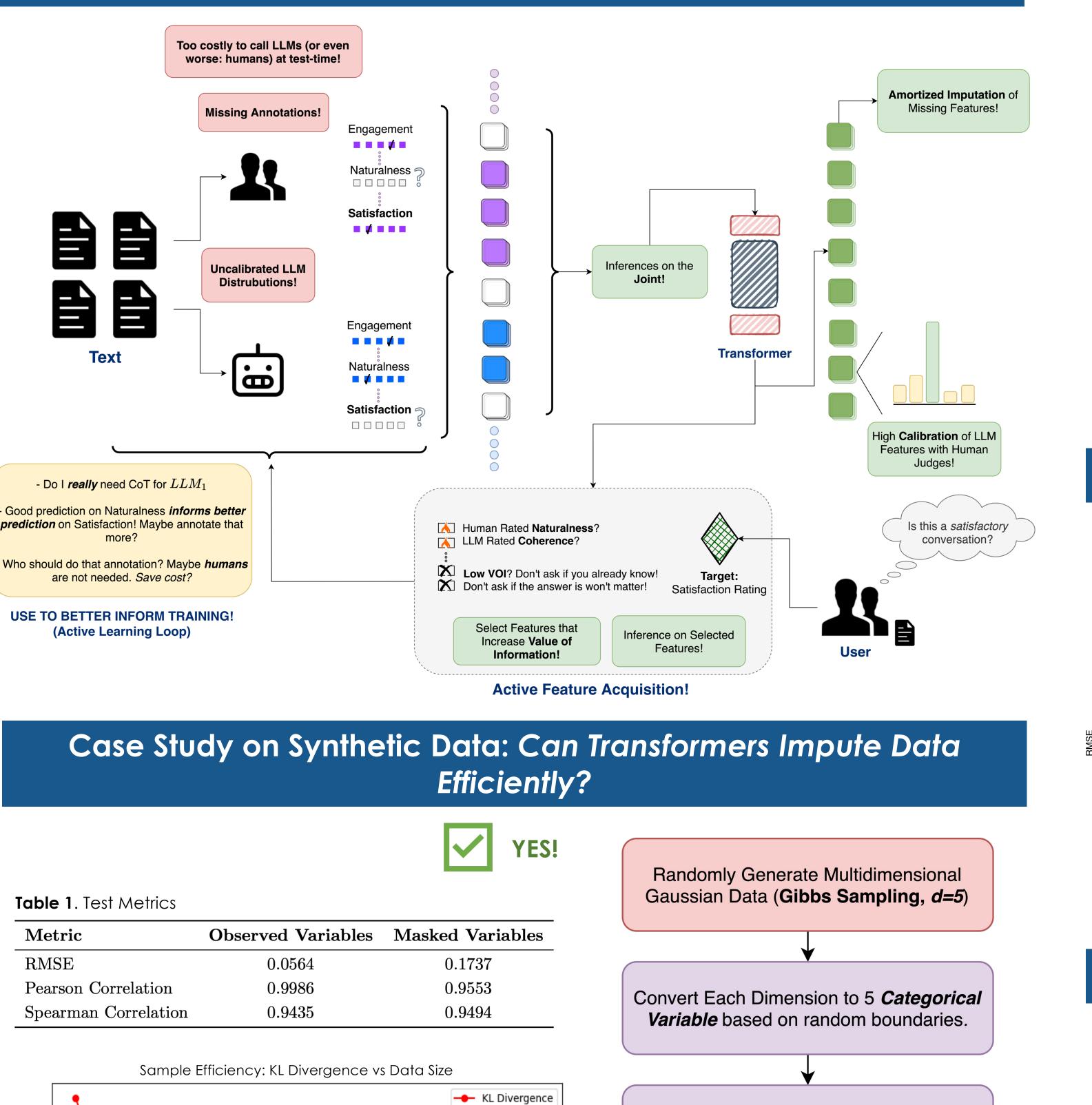
Making these decisions heuristically is costly and time-consuming!

But maybe you don't have to!

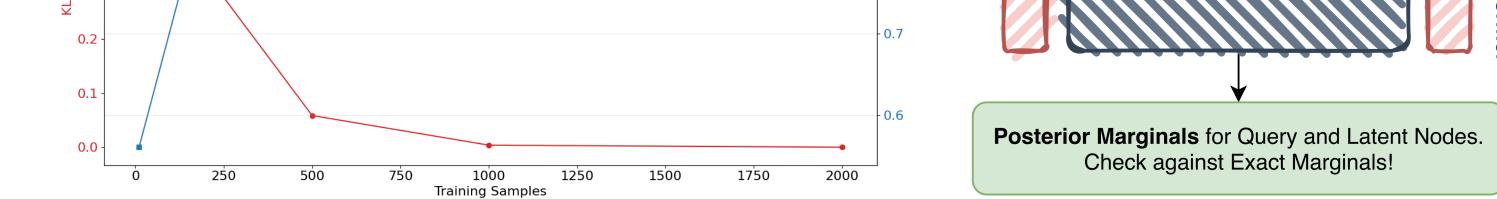
Idea 1 (Amortized Imputation): Multidimensional human annotations can be predicted from multidimensional LLM annotations [3]. Extend the same principle to predict distributions over all uncollected annotations (from LLMs and humans) from all annotations that have been collected so far! Sound familiar? **BERT** [4] Style Masked Modeling!

Idea 2 (Active Feature Acquisition (AFA)): Efficiently characterize each feature. Use Value of **Information** [5] to choose the best feature to ask at test-time. Reduce unnecessary expensive calls to LLMs!

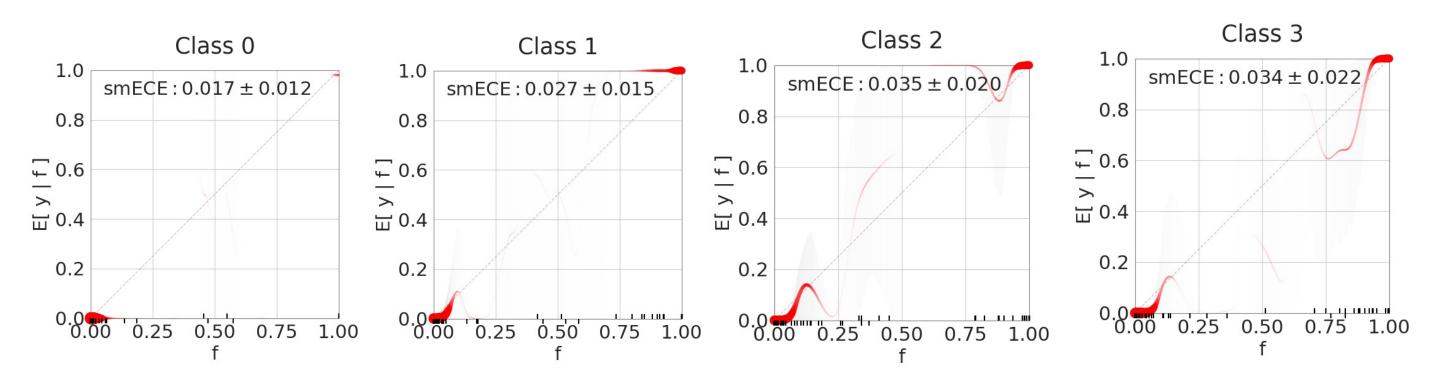
Idea 3 (Active Learning): Use AFA to learn parameters that can handle future examples! These can inspire decisions about which features to annotate and who should annotate them.



For each data point, randomly use as



De-Biasing The LLM for Better Calibration



Class 4 1.0 smECE: 0.016 ± 0.012 0.8 <u>↓</u> 0.6 岀 0.4 0.2 0.0 0.25 0.50 0.75 1.00

Dataset: HANNA Benchmark [5]

- 1. Subset of 3000 stories annotated by humans (25 judges) on 7 dimensions of a scale of 1-5. Also annotated by GPT-4o-mini on the same dimensions.
- We calculate calibration and correlation on **Q0** (Overall Satisfaction) while randomly masking joint of all features with 50% probability!
- Compared against LLMRubric [3]: MLP based calibration network to debias the LLM.

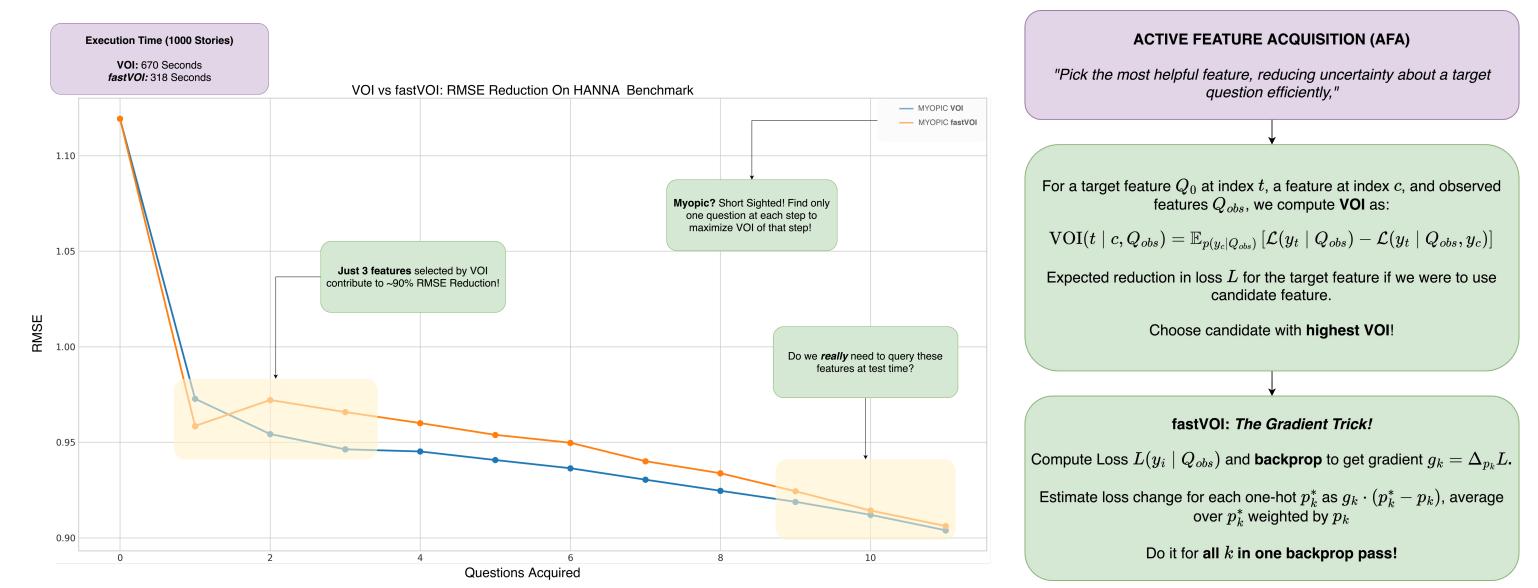
 Table 3. Comparison of Correlation: HANNA Benchmark

Method	RMSE	Pearson	Spearman	Kendall

THE SOLUTION

	¥			
LLMRubric (Baseline)	1.695	0.704	0.701	0.662
Ours	0.280	0.970	0.973	0.953

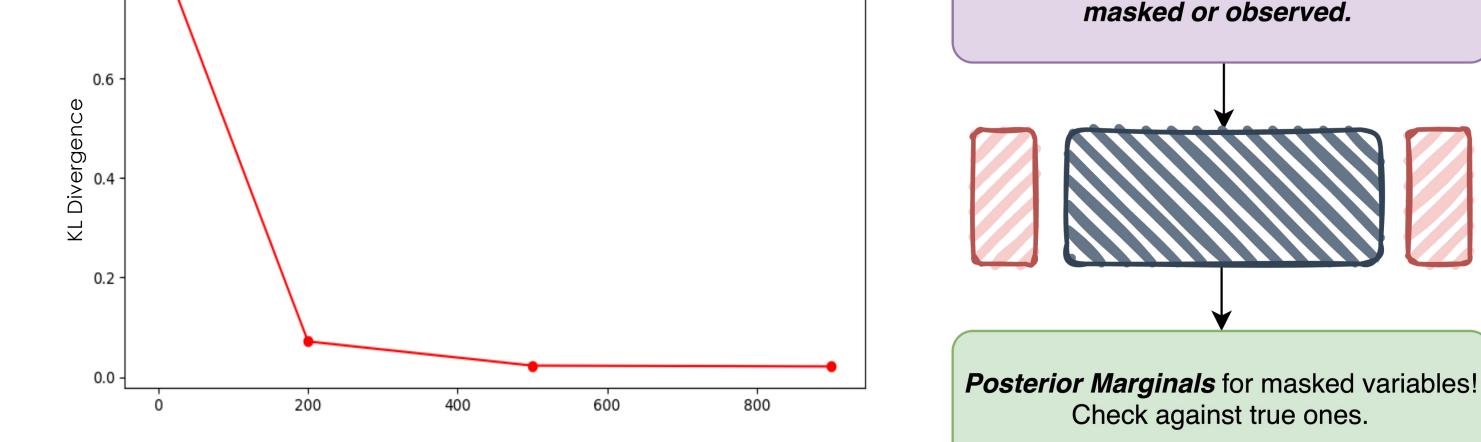
(Faster?) Value Of Information: Reduced Cost



Under Construction: Planned Work!

Plans to extend our work include

• Explore methods that can allow us to learn a **better policy** for **VOI**. Myopic Policy works! But maybe a reinforcement learning inspired policy works better?



- LLMs give us a distribution over the possible logits for any query. Maybe making an assumption of a distribution over that distribution and learning the parameters of the same can improve our 'debiaising'? (Spoiler Alert: Initial experiments have shown that this works for **Dirichlet** and **Logistic Normal** for example!)
- We hope to extend the framework to Active Learning:
 - Currently, our AFA framework effectively selects informative features within *each example*.
 - We plan to apply similar principles across examples, allowing us to strategically select which features to observe during training. This can guide feature observation decisions within training minibatches to improve model parameters, resulting in more accurate predictions on new, unseen minibatches.

¹{psingh54, hshi33}@jhu.edu, jason@cs.jhu.edu

0.8