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ELEVATOR PITCH Case Study 2: Can It Do Graphical Inference

. . . : . YES!
An end-to-end transformer-based framework which will make it easier and cheaper to spin up S p ~
LLM-based §ystems [1,2], tune, or.md evolug’re them! Imcglng yOuU deadg to use LLMs—qs—o—Judge for TIable 2. Test Metrics with Variable Elimination Randomly Generate DAGs with Binary CPD on each
an annotation task (maybe de-biased with human annotations). You will have 1o decide: NMote Varinbl T tont Variabl node.
etric Query arliaples aten arlapiles P(Edge) =0’35, Nodes = 50
» Should (and how much of) the annotation be done by a human? RMSE 0.0219 0.0287 -
* |f the LLM is enough: Which LLM? Pearson Correlation 0.9839 0.9921 p \ 2 N - v
. Is CoT needed? Or maybe prefix-tuning? Spearman Correlation 0.9747 0.9835 Variable Elimination for | | Ancestral Sampling for
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: : . . . 1800 Train / 200 Dev / 200 | | 1800 Train / 200 Dev / 200
¢ DO We need InTermedIOTe SUperVISlon Ond mUIiI'iGSklnga Sample Efficiency (Ancestral Samp|ing) rein TeSt ev rein TeSt ev
« Maybe we need intermediate task predictions? . N SN AN Y
« Does adding more dimensions help? If so, which one’s? 0.61 Y

« Absolute ratings or comparative ratingse
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Randomly Assign Nodes as Observed, Query or Latent
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« Human annotations are expensive!

©
»

: Log D -
- How few human annotations can we get away with? 4 e o
. . R = 0.3 Q (7))
« How can the LLM better mimic the humans: can the LLM be de-biasede 5 < )
0.2 0.7 CBD
Making these decisions heuristically is costly and fime-consuming! N
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00, . . Posterior Marginals for Query and Latent Nodes.
BU"‘ mCIYbe YOU don’i' hqve ‘I'o! 0 250 500 750 1000 1250 1500 1750 2000 Check against Exact Marginals!
Training Samples

Idea 1 (Amortized Imputation): Multidimensional human annotations can be predicted from
multidimensional LLM annotations [3]. Extend the same principle to predict distributions over all
uncollected annotations (from LLMs and humans) from all annotations that have been collected so far!
Sound familiare BERT [4] Style Masked Modeling!
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Idea 2 (Active Feature Acquisition (AFA)): Efficiently characterize each feature. Use Value of L0 lrs00 ] Toidroobiaoos ] [ smEcE:0.085% 0050/ | | smECE:0.034+0.022/ |
Information [5] o choose the best feature to ask at test-time. Reduce unnecessary expensive calls to 0.8 0.8 0.8 . 0.8
LLMs! _ .
< 0.6 < 0.6 < 0.6 v 0.6
Idea 3 (Active Learning): Use AFA to learn parameters that can handle future examples! These can e w O 0
inspire decisions about which features to annotate and who should annotate them. 0.2 0.2 0.2 0.2
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Too costly to call LLMs (or even +0 smECE:0.016 £ 0.012 7 Dataset: HANNA Benchmark [5]
worse: humans) at test-time! ) 0.8 1. Subset of 3000 stories annotated by humans (25 judges) on 7
| . . — dimensions of a scale of 1-5. Also annotated by GPT-40-mini on the
Amortized Imputation of w 0.6 . .
[Missing Annotations!} ) Missing Features! = same dimensions.
Pl ) i 0.4 2. We calculate calibration and correlation on QO (Overall Satisfaction)
Natur‘éamess 0.2 while randomly masking joint of all features with 50% probability!
HL‘ R ¢ _ 3. Compared against LLMRubric [3]: MLP based calibration network to de-
08%5 "0.25 050 0.75 1.00 bias the LLM.
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Distrubutions! Table 3. Comparison of Correlation: HANNA Benchmark
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Engagement Method RMSE Pearson Spearman Kendall
Text B _— a Transformer LLMRubric (Baseline) ~ 1.695  0.704 0.701 0.662
B Ours 0.280  0.970 0.973 0.953
Satistaction J J
SEEEEE J '/H:gh Calibration o m
I eaturi.‘:,j (\lete ! uman .
P——— T 00 g (Faster?) Value Of Information: Reduced Cost

- Good prediction on Naturalness informs better
prediction on Satisfaction! Maybe annotate that [A] Human Rated Naturalness?

more? " [A] LLM Rated Coherence?

Is this a satisfactory
conversation?

- Who should do that annotation? Maybe humans o p

Execution Time (1000 Stories) ACTIVE FEATURE ACQUISITION (AFA)

: Dg . fastVOI: 318 Seconds "Pick the most helpful feature, reducing uncertainty about a target
are not needed. Save cost? E Low VOI? Don't ask if you already know! Target: | VOI vs fastVOIl: RMSE Reduction On HANNA Benchmark question efficiently,”
. [X] Don't ask if the answer is won't matter! Satisfaction Rating ! — MYOPC VoI
USE TO BETTER INFORM TRAINING! 5 1 | / v \
(Active Learning Loop) Slilc?galzsza:llja:isetg? t 1 Inference on St—‘flected D For a target feature (¢ at index t, a feature at index ¢, and observed
Information! Features! User Mvgﬂz?u S:tfg Saltgggicril' sFti;;itznlv features ) ,ps, we compute VOI as:
"""""""" Active Foatare Acquisition! e VOt | ¢, Qots) = Eptyiu) £t | Qobe) = L(ye | Qs3]
. 4{ e DR SR E e Expected reduction in loss L for the target feature if we were to use
candidate feature.
M . & Ch didate with highest VOI!
Case Study on Synthetic Data: Can Transformers Impute Data z .. N cose candidate with ighest y
Efficiently? | ,,
| fastVOI: The Gradient Trick!
0.95 \‘\ Compute Loss L(y; | Qops) and backprop to get gradient g, = A, L.
Y ES! 4 h Estimate loss change for each ong-hot D7, as gk - (pz — pk), average
Randomly Generate Multidimensional Ot
Table 1. Test Metrics G&USSlan Data (G|bbs Sampling, =5) 0 5 p Sveione ACqUir:d 8 10 \ Do it for all k in one backprop pass! /
N\ J
Metric Observed Variables Masked Variables ¢
RMSE 0.0564 0.1737 Vs ™\ o .
Pearson Correlation 0,906 0.9553 o . Under Construction: Planned Work!
g Correlati A 104 Convert Each Dimension to 5 Categorical
pearman Lorrelation 0.9435 0.949 Variable based on random boundaries.
g p Plans to extend our work include
Sample Efficiency: KL Divergence vs Data Size ¢
—e— KL Divergence 4 h « Explore methods that can allow us to learn a better policy for VOI. Myopic Policy works! But maybe
0.8 For each data point, randomly use as a reinforcement learning inspired policy works bettere
masked or observed.
\_ Y, : L : : . .
06 « LLMs give us a distribution over the possible logits for any query. Maybe making an assumption of a
0 . distribution over that distribution and learning the parameters of the same can improve our ‘de-
o = biaising’'e (Spoiler Alert: Initial experiments have shown that this works for Dirichlet and Logistic
(@)]
T 04- & Normal for example!)
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. m « We hope to extend the framework to Active Learning:
| « Currently, our AFA framework effectively selects informative features within each example.
4 D) « We plan to apply similar principles across examples, allowing us to strategically select which
00 _ | | | | Posterior Marginals for masked variables! fe.at.ures to observe during training. This can guide featgre observation decmon; w1thm training
0 200 400 600 800 Check against true ones. mlmbatch.es. to improve model parameters, resulting in more accurate predictions on new,
g y unseen minibatches.
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