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Abstract
Recent advances in speaker diarization have explored diverse
clustering methods, particularly in multimodal frameworks.
However, a critical limitation lies in the clustering stage, where
heuristic-based methods often fail to leverage the full potential
of multimodal data. For example, threshold-based clustering
frequently leads to over-clustering, causing incorrect speaker
assignments and elevated DER. To address this, we propose
CYS-MSD, a novel framework that fuses audio-visual modal-
ities via a trainable cross-modal attention mechanism. The em-
beddings are fine-tuned with a multitask objective to jointly pre-
dict speaker counts and assign speaker labels, enabling data-
driven clustering that adapts to varying speaker scenarios. Ad-
ditionally, a modality-masking mechanism ensures robustness
to missing inputs in real-world conditions. We evaluate CYS-
MSD on the AVA-AVD corpus, reporting a 5% reduction in
DER over the baseline and an average 2% reduction compared
to various SOTA systems.
Index Terms: diarization, multitask-learning, multi-modality

1. Introduction
Speaker diarization (SD), the task of determining ‘who spoke
when’ in audio or audio-visual streams, is a fundamental prob-
lem for conversational analysis. Its applications span a wide
range, including meeting transcription, media content analy-
sis, and human-computer interaction [1]. Classical approaches
based on clustering speaker embeddings [2, 3] remain preva-
lent for processing long, multi-speaker recordings due to their
robustness with real-world conversational data [4]. How-
ever, recent probabilistic clustering methods, while improving
speaker uncertainty handling [5], still face challenges with over-
clustering, often overestimating the true number of speakers in
conversations.

Further, multimodal SD has seen significant advancements
in recent years, particularly in leveraging audio-visual cues to
improve performance [6]. For example, Kang et al. [7] intro-
duced a novel approach that integrates d-vectors with spatial
information obtained through acoustic beamforming. Similarly,
Ahmad et al. [8] introduced a pre-trained Audio-Visual (AV)
synchronization model to enhance clustering, showing promis-
ing results on the AMI meeting corpus [9]. However, these
approaches often struggle with missing modalities or rely on
simplistic fusion strategies that overlook complex intermodal
interactions. A recent work by Cheng et al. [10] attempted to
address these limitations by proposing a framework that jointly
utilizes audio, visual, and semantic cues, formulating multi-
modal modeling as a constrained optimization problem. While
this approach shows promise, it also highlights the ongoing
challenge of effectively integrating multiple modalities in spon-

taneous and unstructured conversations, particularly when deal-
ing with varying quality and availability of different modalities
across speakers and time.

Finally, while end-to-end approaches [11, 12] have shown
promise in achieving good performance on the CALLHOME
dataset [13], clustering-based methods continue to demonstrate
superior performance, particularly on datasets that mimic real-
world conditions with complex speaker dynamics [14].

Hence, in this work, we focus on three critical challenges
that remain unresolved in contemporary diarization research:

1. Systems [6] often report higher accuracy with oracle speaker
counts for each utterance, creating a significant gap between
evaluation protocols and practical deployment scenarios.

2. Threshold-based clustering approaches are error-prone in
real-world settings, especially when speaker overlap is high
or the number of speakers varies unpredictably [14, 15].

3. Multimodal approaches, while promising, frequently fail to
address missing modalities or rely on simplistic fusion strate-
gies that overlook inter-modal interactions.

To address these challenges, we introduce CYS-MSD
(Count Your Speaker - Multitask Learning for Multimodal SD),
a novel multitask multimodal framework for speaker diariza-
tion. Building on recent advances in multimodal architectures,
CYS-MSD integrates trainable cross-modal attention with a
multitask learning framework to jointly predict speaker counts
and segment speaker labels. Additionally, we propose a robust
mechanism for handling missing modalities [16] that ensures
reliable performance even when audio or visual information is
partially or entirely unavailable—a common challenge in real-
world deployments. To our knowledge, this is the first work to
explore the benefits of speaker-counting in the process of di-
arization. The core contributions of CYS-MSD, shown in Fig-
ure 1, are as follows:

1. Learnable Modality Fusion: We introduce an attention-
based mechanism to learn optimal fusion weights for audio
and visual embeddings while employing a random masking
mechanism to handle missing modalities dynamically.

2. Multitask Learning: We design a multitask framework that
optimizes embeddings using a combination of Contrastive
[17] and BCE loss for segment-level active speaker identi-
fication and MSE Loss for speaker count estimation. This
auxiliary supervision not only enhances embedding quality
but also informs downstream clustering.

3. Informed Clustering: Diarization is performed using Ag-
glomerative Hierarchical Clustering (AHC) [18], albeit,
guided by the predicted speaker counts for each segment, re-
placing the need for heuristically tuned thresholds.

We evaluate CYS-MSD on the AVA-AVD corpus [14], a



Figure 1: Architecture: Multitask Learning for Multimodal SD

challenging dataset designed to test diarization systems under
complex, real-world conditions. Our results demonstrate sig-
nificant performance gains over SOTA works. Ablation studies
further reveal the effectiveness of each component, particularly
the random masking mechanism and multitask objective, in en-
hancing diarization robustness and accuracy. The remainder of
this paper is organized as follows: Section 2 presents the pro-
posed method in detail. Section 3 defines the data used for pre-
training and evaluation and also identifies the metrics and train-
ing setup. Section 4 presents detailed experimental evaluations,
comparisons, and ablation studies. Section 5 concludes with a
discussion of limitations.

2. Proposed Method
In this section, we introduce the core components and method-
ology of the proposed multimodal speaker diarization system,
CYS-MSD.

2.1. Normalization & Embedding Extraction

For the audio modality, we utilized a pre-trained X-Vector-
based architecture [19] implemented with the Hyperion toolkit1.
Specifically, we employed a ResNet100 [20] architecture with
four stages and residual squeeze-excitation blocks [21], pre-
trained on VoxCeleb-2 [22] for the task of speaker recognition.
The model incorporated utterance-level mean and standard de-
viation normalization. For each audio file, we leveraged oracle
Voice Activity Detection (VAD) to identify segments contain-
ing active speakers. Each segment was processed using a slid-
ing window approach with a window size of 1.5 s and a shift of
0.75 s. From each active segment, 192-dimensional embeddings
were extracted after pooling.

For the video modality, we employed the InsightFace li-
brary2 for face recognition and detection. Specifically, we

1https://github.com/hyperion-ml/hyperion
2https://github.com/deepinsight/insightface

use the BUFFALO L variant, which incorporates a pre-trained
RetinaFace detection module [23] coupled with a ResNet50
recognition backbone fine-tuned on the WebFace600K dataset
[24]. The architecture uses ArcFace [25] loss to maximize
class separability. For each active segment, all detected faces
were processed, and mean pooling was applied to obtain 512-
dimensional embeddings for each segment.

2.2. Modality Masking & Learnable Attention

To enhance the robustness of our multimodal system and pre-
vent over-reliance on any single modality, we implemented a
stochastic modality masking strategy [16] during training. For
each batch, modalities were independently masked with prob-
ability pm, where audio and visual embeddings were replaced
with zero vectors:

em =

{
0, with probability pm

eorig
m , otherwise

(1)

where m ∈ {audio, visual} denotes the modality, and eorig
m rep-

resents the original embedding. We note that there theoreti-
cally could be cases of both modalities being masked. However,
since pm is kept at 10%, chosen by experimentation, the actual
chances of both modalities being zero were low.

Following the masking operation, we employed a mul-
timodal fusion strategy that combines projection layers and
multi-head attention. First, we projected the audio and visual
embeddings into a common dimensional space:

Ep
a = ReLU(EaWa)

Ep
v = ReLU(W2

v ReLU(EvW
1
v))

(2)

where Wa ∈ Rda×df projects audio embeddings to the fusion
dimension df , and the visual embeddings undergo a multi-layer
perceptron (MLP) transformation with an intermediate dimen-
sion of dv/2 and dropout regularization.



We then employed a 4-headed attention mechanism where
audio embeddings attended to visual information:

A = Attention(Ep
a,E

p
v,E

p
v) (3)

where Ep
a serves as the query and Ep

v provides both keys
and values. The final multimodal representation was obtained
through a weighted combination:

R = αEp
a + (1− α)A (4)

where α is a pre-defined weighting factor that controls the con-
tribution of the audio modality versus the attention-processed
features. This weighted fusion strategy allowed us to main-
tain strong speaker-discriminative information from the audio
stream while incorporating complementary visual cues through
attention.

2.3. Multitask Training

We employed a multitask learning strategy with two comple-
mentary objectives: active speaker identification and speaker
counting. This dual-objective approach helps learn more robust
multimodal representations while also providing practical util-
ity for downstream diarization tasks.

2.3.1. Speaker Label Detection

The primary task involves detecting active speakers in each seg-
ment using the fused multimodal representations. Given the
fused embeddings R, we employed a classification head con-
sisting of two fully connected layers with ReLU activation and
dropout. A Sigmoid layer represented the probability of each
speaker being active at each time step, for S total speakers. We
optimized this objective using binary cross-entropy loss:

Lcls = BCE(P,Y) (5)

where Y represents the ground truth binary speaker labels and
P is the prediction. We note that using a binary label for each
speaker helps account for overlapping speech, where multiple
speakers can be active simultaneously.

To enhance the discriminative power of the learned repre-
sentations, we additionally employed a contrastive learning ob-
jective using the normalized temperature-scaled cross entropy
(NT-Xent) loss [26] within a temporal window. For each seg-
ment i, we treated segments j within a temporal window w
sharing active speakers as positive pairs (Pi). The loss is then
computed as:

Lcont = − log

∑
j∈Pi

exp(sim(ri, rj)/τ)∑
k/∈Pi

exp(sim(ri, rk)/τ)
, (6)

where sim(·, ·) is cosine similarity and τ is the temperature.

2.3.2. Speaker Counting

As a complementary task, we predicted the total number of
unique speakers in the utterance. This is accomplished through
a separate counting head that processed the mean-pooled fused
embeddings:

C = MLPcount(mean(R)) (7)

where C ∈ R represents the predicted speaker count. This
objective is optimized using mean squared error loss and the
final training objective combines both tasks with a weighting
parameter β:

Lcount = MSE(C,Cgt)

Ltotal = β(Lcls + Lcont) + (1− β)Lcount
(8)

It should be noted that while the primary task of label de-
tection was used to generate final embeddings for clustering,
the secondary task was used to predict speaker count for each
utterance to allow for informed clustering.

2.4. Informed Clustering

For the final speaker diarization output, we employed AHC on
the trained representation of embeddings R. The clustering pro-
cess leveraged both the multimodal representations and the pre-
dicted speaker count from our multitask model.

We first normalized all segment-level embeddings using L2
normalization to ensure they lie on a unit hypersphere. Follow-
ing [27], we computed pairwise cosine distances between all
segments and performed average-linkage clustering. The num-
ber of clusters was determined by the speaker count prediction
from our model, which provided a more informed choice com-
pared to traditional threshold-based approaches [28].

To maintain temporal consistency and reduce fragmenta-
tion, we processed segments using overlapping windows during
both embedding extraction and clustering. This helped capture
speaker transitions more accurately while maintaining speaker
homogeneity within segments. The final diarization output was
generated such that each segment was assigned a speaker label
based on its cluster membership.

3. Experiments
In this section, we outline the datasets and metrics. We also
describe the hyperparameter selection and training strategy used
for our experiments.

3.1. Dataset & Metrics

To evaluate CYS-MSD, we chose the AVA-AVD corpus [14]
due to its in-the-wild scenarios. The dataset comprises 351
video clips, divided into 243 for training, 54 for validation, and
54 for testing. Each clip is 5 minutes long and may feature up
to 24 speakers. Due to the small size of the corpus, we first
used the validation data to choose the best hyperparameters, but
trained our final model on both the training and validation sets.
The test videos were kept unseen for final evaluation.

The primary metric for our evaluation is the Diarization Er-
ror Rate (DER)3. However, we also report the Speaker Error
(SPKE) and Miss Rate (MR). We evaluate our approach first
against the baseline, AVR-NET, defined with the release of the
AVA-AVD corpus [14]. We also evaluate against SOTA ap-
proaches like the one proposed by Cheng et al. [10], AFL-NET
[16], and DYVISE [29].

3.2. Training Strategy

We trained the model for 25 epochs using the AdamW [30] op-
timizer with an LR of 1×10−5 and a batch size of 16. The fused
dimension was set to 256. For multimodal fusion, we employed
an audio weighting factor (α) of 0.6, found through validation.
The contrastive learning temperature (τ ) was set to 0.3 with a
margin of 1.0. We used equal weighting (β = 0.5) between the
classification and counting objectives during multitask training.

3https://github.com/nryant/dscore



4. Results
This section presents the experimental results and comparisons
on the AVA-AVD corpus. Table 1 demonstrates the effec-
tiveness of CYS-MSD in speaker diarization, achieving lower
DER and SPKE compared to prior works4.

Table 1: Performance of CYS-MSD

Framework VAD DER ↓ MR SPKE

DyViSE Oracle 23.46 1.98 20.86
AFL-NET Oracle 22.12 2.55 21.10
AVA-NET Oracle 20.57 2.92 17.65

Cheng et al. Oracle 20.32 - 17.40

Ours (c = 0) Oracle 19.16 2.52 17.14
Ours (c = 0.25) Oracle 18.22 2.19 17.08

Our proposed approach achieves a DER reduction of 4.3%
and 3% over DYVISE and the baseline AFL-NET, respec-
tively, at a collar of 0 seconds. Compared to the SOTA, we
achieve a DER reduction of 1.16% and a SPKE reduction of
0.26%. We note that, at a more common collar of 0.25 sec-
onds, we achieve an additional 1% reduction in DER. DYVISE
achieves the lowest MR but has a higher DER and SPKE, sug-
gesting that despite strong speech activity detection, its identity-
based clustering remains suboptimal. AFL-NET [16] and
AVA-NET [14] incorporate modality masking but still rely on
heuristically optimized AHC. For example, AFL-NET uses
three modalities (adding lip detection) but is still outperformed
by our approach.

4.1. Ablation Study

In Table 2, we report the effects of ablation on CYS-MSD. It
should be noted that all removals are sequential; that is, each
row is obtained by removing the components mentioned in all
the above rows. Further, the Dynamic AHC ablation only re-
moves the clustering with predicted speaker counts. The em-
beddings are still obtained through the multitask learning mod-
ule.

Table 2: Ablation Study on CYS-MSD (c = 0)

Method & Ablation DER SPKE

CYS-MSD 19.16 17.14

w/o Dynamic AHC 21.85 19.42
w/o Multitask Learning 22.92 21.51
w/o Modality Masking 23.08 21.76

w/o Video Modality 26.43 24.22

The baseline CYS-MSD achieves a DER of 19.16% and
SPKE of 17.14%. Sequential removal of components reveals
their relative importance: removing Dynamic AHC increases
DER by 2.69%, while ablating multitask learning further de-
grades performance to 23.92% DER. This confirms our hypoth-
esis: Clustering with high-quality predictions of the number of
speakers in each segment has a direct impact on decreasing the
DER. As expected, removing the video modality leads to the
highest degradation, with DER increasing to 26.43% (+7.27%

4c represents the collar in this case. Note that the AVA-AVD has
overlapping speech and hence we choose to report scores with collar.

absolute from baseline) and SPKE reaching 24.22%, underscor-
ing the vital role of visual information in our multimodal di-
arization framework.

4.2. Underscoring the Importance of Counting

We further perform comparative experiments to evaluate the ex-
tent of benefits obtained by using speaker counts for each utter-
ance. Table 3 presents the accuracy in predicting the number of
speakers with two different methods. The first uses a search5

over the thresholds for AHC within the range from 0.1 to 0.9
with a step size of 0.01. The second is the proposed approach
with predicted counts for each detected utterance.

Table 3: CYS-MSD: Heuristic vs Informed Clustering

Clustering Approach Accuracy DER ↓

AHC (τ = 0.5) via Search 38.19% 21.85%
AHC via Predicted Counts 78.88% 19.16%

It can be seen from the table that using clustering with just a
heuristic search leads to low accuracy for speaker counts. This
can be attributed to the fact that the dataset has a high variation
of unique speakers in each file. However, the multitask module
is able to increase the accuracy, which directly translates to a
lower DER.

Figure 2: Sample Diarization Output (Top to Bottom: CYS-
MSD, CYS-MSD w/o Informed Clustering, Reference)

Figure 2 illustrates an example of this scenario. While both
systems produce segmentations that are close to the reference,
accurately determining the number of speakers significantly im-
proves diarization quality. In the case of CYS-MSD without
speaker counting, over-clustering results in the detection of five
speakers, whereas the reference indicates only three.

5. Conclusion & Limitations
This paper presents CYS-MSD, a novel multitask framework
for SD that integrates speaker counting with multimodal fusion.
Our approach leverages informed clustering to adaptively re-
fine speaker embeddings, outperforming SOTA methods while
demonstrating the superiority of learned speaker grouping over
traditional heuristic clustering. By jointly optimizing diariza-
tion and speaker counting, we enhance segmentation accuracy
and reduce speaker attribution errors, particularly in multi-
speaker scenarios. However, a key limitation of our method
is its reliance on oracle VAD, which restricts real-world appli-
cability. Future work should focus on integrating similar frame-
works with robust VAD models to enable deployable speaker
diarization systems.

5We use the validation set to find the best threshold.
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