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Abstract—We present the JHU-MIT submission for NIST
SRE24, along with post-evaluation analysis and key insights.
In the audio fixed condition, our system used Res2Net50 and
ResNet100 embeddings; the open condition additionally included
an ECAPA-TDNN with a multilingual Wav2Vec2 front-end,
which emerged as the best single system. The audio back-ends
consisted of either PLDA adapted to SRE24 Dev or a mixture
of PLDA models tuned to different subconditions. To avoid
overfitting, we optimized back-end hyperparameters via two-
fold cross-validation. For the visual condition, we leveraged pre-
trained ResNet100-Subcenter-ArcFace embeddings. Agglomera-
tive clustering was used to diarize speaker and face identities in
multi-speaker videos. The primary audio fixed system achieved
Act. Cp=0.574, while the open condition reached Cp=0.366 on
SRE24 Eval. The visual system yielded Cp=0.169, and audio-
visual fusion further improved performance, achieving Cp=0.101
(fixed) and Cp=0.087 (open).

Index Terms—Speaker Recognition, NIST, Evaluation, Speaker
Embeddings, PLDA, Calibration

I. INTRODUCTION

The National Institute of Standards and Technology (NIST)
periodically organizes speaker recognition evaluations (SRE)
to benchmark the latest advancements in the field [1]. These
evaluations focus on the speaker detection task, i.e., deter-
mining whether the speaker in a test recording matches the
speaker in one or more enrollment recordings. Over time,
SRE has evolved from telephone speech [2], to far-field micro-
phones [3], [4], then to non-English telephone speech [5]–[7],
and multi-modal evaluations on internet videos [6], [7]. NIST
SRE21 [8] featured a multi-modal, multi-language, multi-
source evaluation with conversational telephone speech (CTS)
and audio from videos (AfV). It introduced new challenges,
including cross-source (CTS enrollment, AfV test) and cross-
language trials (English, Cantonese, and Mandarin). SRE242

follows a similar setup to SRE21, incorporating audio, visual
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(face recognition), and multi-modal tracks. However, it intro-
duces new target languages–Tunisian-accented Arabic, French,
and English–and permits multi-speaker test segments, thereby
requiring speaker and face diarization.

This paper presents the JHU-MIT submission to NIST
SRE24. This is a joint effort between JHU and MIT-LL,
building on expertise gained from previous evaluations [9]–
[12]. We describe the diverse systems developed for this
evaluation and provide post-evaluation analyses. These include
the impact of different embedding architectures, back-end
models, and calibration strategies, as well as how results vary
with gender, source, and language conditions. We also examine
the complementarity of audio and visual modalities.

For the audio track, we developed systems based on
ResNet100 [13], Res2Net [14], and multilingual Wav2Vec2-
ECAPA-TDNN embeddings [15]. Due to the lack of in-domain
training data, all embeddings were processed using PLDA-
based back-ends, which were carefully adapted to the 20 in-
domain development speakers via two-fold cross-validation.
To address variability across source and language conditions,
we employed either condition-dependent preprocessing of
embeddings or ensembles of condition-specific PLDA back-
ends. For the video track, we used pre-trained face detectors
alongside Subcenter-ArcFace embeddings [16]. Additionally,
we implemented a quality control mechanism to discard low-
quality face embeddings, which led to improved performance
compared to previous evaluations [11], [12].

Post-evaluation analysis showed that Wav2Vec2-ECAPA-
TDNN was the top-performing single system, with ResNet100
and Res2Net yielding comparable results. Fusion of multiple
systems led to moderate performance gains, often mitigating
the effects of miscalibration present in individual systems.
The analysis also underscored the importance of calibrating
using cross-validation scores. Moreover, it highlighted the
value of including VoxCeleb in training to prevent performance
degradation on AfV conditions. Despite having both AfV and
CTS data, we observed substantial degradation in cross-source
trials compared to source-matched trials, while performance
loss due to cross-language trials was relatively minor.

II. DATASETS

A. Train Datasets
The audio track proposed fixed and open training conditions.

The fixed data consisted of 638k recordings from 7,251
speakers combining NIST SRE-CTS Superset [17] (large-scale



CTS data compiling SRE 1996-2012), NIST SRE16 Eval [5]
(CTS data from 101 Cantonese and 100 Tagalog speakers)
and NIST SRE21 [8] (CTS and AfV data from 183 bilingual
speakers of English, Mandarin, and Cantonese).

For the open condition, we added VoxCeleb 1+2 [18]
(7365 AfV speakers), NIST SRE18 [6] (CTS data from 210
Tunisian Arabic speakers), NIST SRE19 [7] (CTS data from
196 Tunisian Arabic speakers), resulting in a total of 836k
recordings from 14,903 speakers. We also reused models from
NIST SRE21 fixed [12]. The SRE21 setup excluded SRE21,
SRE18, and SRE19 from training and held out a few speakers
from SRE-CTS Superset and SRE16 for development.

For embedding training, we augmented speech on-the-fly
with MUSAN noise3, AIR4 reverberations, and simulated
telephone channel. The telephone simulation was applied to
25% of AfV recordings and involved downsampling to 8 kHz,
applying a bandpass filter with random cut-off frequencies
(100–300 Hz low-cut, 3400–3700 Hz high-cut), encoding
with one of the following torchaudio5 codecs: A-law, mu-law,
G723.1, or G726, and then upsampling back to 16 kHz. No
augmentation was used for back-end training.

B. Development datasets
We used two datasets for development:
• NIST SRE21 Dev: 20 speakers with 193k audio trials and

38.9k audio-visual trials used for performance monitoring
and calibration.

• NIST SRE24 Dev: Provided by the organizers, it includes
20 speakers with 1.17M audio trials and 258k audio-
visual trials. It was used for back-end adaptation, perfor-
mance monitoring, calibration, and fusion. We split it into
two folds to tune adaptation hyperparameters and prevent
overfitting, ensuring each fold had 10 gender-balanced
speakers. When splitting, inter-fold non-target trials had
to be discarded, but target trials remained unchanged from
the original SRE24 Dev full trial list.

III. AUDIO SYSTEMS

A. ResNet and ECAPA-TDNN
We used log-Mel-filter-bank features with 16 kHz inputs

and two configurations: Wideband (80 filters, 20-7600 Hz)
and Narrowband (64 filters, 64-3700 Hz). Features were short-
time mean-normalized over 3-seconds windows, with silence
removed using Kaldi energy VAD or provided time marks.

The embedding networks consisted of an encoder that
extracts frame-level discriminant embeddings, a pooling mech-
anism, and a classification head [19]. As the encoder, we used
ResNet100 [13] or Res2Net50 [12], [14]. We added frequency-
wise squeeze-excitation (FwSE) [20] to the output of each
ResNet/Res2Net block. We used channel-wise attentive statis-
tics pooling [21], 192 dim. embeddings, and subcenter additive
angular margin softmax loss [22] with two subcenters per
class. The networks were trained on 2-second chunks with a
margin of 0.2 using Adam optimizer, learning-rate=0.1, halved

3http://www.openslr.org/resources/17
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every 40k(fixed)/50k(open) steps. After training, we performed
a large-margin (margin=0.3) fine-tuning on 4-second chunks
(SGD optimizer, learning-rate=0.01 with cosine schedule with
a period of 2500 steps, momentum=0.9) where we added hard-
prototype mining (8 hard-prototypes) InterTop-K penalty [23]
margin (K=5, penalty=0.1). We had fixed/open and Narrow-
band/Wideband versions of these networks. Additionally, we
had a Res2Net50 (without FwSE) and an ECAPA-TDNN (4
layers of 2048 dim) from NIST SRE21 fixed condition [12].

B. Wav2Vec2+ECAPA-TDNN
This network uses Multilingual Wav2Vec2 Large, trained

on 128 languages6 [24], as a feature extractor. A weighted
average of its hidden layers is then fed into an ECAPA-
TDNN embedding network with three 1024-dim. Res2Net
layers, following [25]. The model was trained in three stages.
First, the ECAPA-TDNN and weighted average coefficients
were trained with frozen Wav2Vec2 (margin=0.2, SGD op-
timizer, learning rate=0.4 warmed up 3.5k steps and halved
every 10k steps, momentum=0.9, batch-size=1024) on 3-
second chunks for 68k steps. Second, it was fine-tuned by
unfreezing Wav2Vec2 (margin=0.2, InterTop-K penalty=0.1,
learning rate 5e-5 warmed up for 6k steps and halved every
5k steps), for 33k steps. Third, hard-prototype mining fine-
tuning (margin=0.4, learning rate=1.3 with cosine schedule
with a period 2.5k steps) was applied on 8-second chunks for
2.5k steps. This network quickly overfitted to the training data,
making it ineffective on the SRE24 set. We conducted several
experiments to identify hyperparameters—such as margins,
learning rates, and early stopping criteria—that would mitigate
overfitting and improve performance on the SRE24 dev set.

C. Language Identification
We used automatic language identification (LID) to label

the evaluation data, while ground-truth labels were used for
all other datasets. In the fixed condition, we trained an FwSE-
ResNet34 LID model using only the fixed training data. For
the open condition, we employed a Res2Net50 model trained
on the LRE22 open condition, as described in [26]. To classify
utterances as English, Arabic, or French, we trained three-class
linear Gaussian back-ends using the LID network embeddings
extracted from the SRE24 development set.

D. Speaker Diarization
We performed speaker diarization on AfV test record-

ings using Agglomerative Hierarchical Clustering (AHC) of
speaker embeddings, computed from 3-second windows (1-
second shift). A PLDA adapted to SRE24 Dev generated the
AHC self-similarity matrix, with score calibration also trained
on SRE24 Dev. The AHC stopping threshold was set to 0,
with a maximum limit of four speakers. Diarization time marks
served as VAD to extract an embedding per diarized speaker.
The back-end then scored enrollment embeddings against all
detected speakers, selecting the highest-scoring match.

Ultimately, speaker diarization improved the single systems’
Act DCF by between 0 and 5% relative on the SRE24 Eval (see
Table I), which was not a significant gain. Visual inspection

6https://huggingface.co/facebook/wav2vec2-xls-r-300m



TABLE I
ABLATION ON DIARIZATION AND CALIBRATION ON SRE24 EVAL

Cond ResNet100-WB Fixed W2V2-ECAPA Open

Diar. Calib. Min Cp Act Cp Min Cp Act Cp

N N 0.638 0.926 0.467 0.471
N CD-Folds 0.609 0.620 0.389 0.413
Y N 0.635 0.930 0.453 0.457
Y CI-Folds 0.635 0.637 0.453 0.457
Y CI-Cheat 0.635 1.030 0.453 0.746
Y CI-Mix 0.635 0.745 0.453 0.522
Y CD-Folds 0.608 0.623 0.374 0.395
Y CD-Cheat 0.612 1.120 0.379 1.04
Y CD-Mix 0.612 0.709 0.377 0.457

of the videos suggests that most contain only one or two
speakers, with the target speaker dominating the audio. This
could explain the limited impact of diarization.

E. JHU Back-end
JHU back-end pipeline followed JHU-v2 in [12], applying

condition-dependent centering, global PCA, Whitening,
length normalization, and PLDA adapted to in-domain
speakers (Mandarin(CMN)/Cantonese(YUE) for SRE21
and Arabic(ARA)/French(FRA) for SRE24). First, we
computed separate means and covariances for CTS
(µCTS,SCTS) and AfV (µAFV,SAFV), then adapted
them per in-domain language. For SRE21, the in-domain
data consisted of NIST SRE21 Eval and CMN/YUE
speakers in the SRE-CTS Superset. For SRE24, in-
domain data included SRE24 Dev, adding SRE18-19 in
the open condition. Thus, we obtained six adapted mean–
covariance pairs {µa−b,Sa−b|a ∈ {AFV,CTS}, b ∈
{ENG,CMN,YUE}/{ENG,ARA,FRA}}. The adapted
means were used to center the in-domain data. The rest of
the training data was centered using µCTS and µAFV. Next,
joint PCA dimensionality reduction/whitening was computed
from the average of adapted covariances,

S =
1

6

∑
a∈{AFV,CTS}

∑
b∈{ENG,CMN,YUE}/

{ENG,ARA,FRA}

Sa−b , (1)

ensuring balanced condition weighting. The same projection
was applied to all data, followed by length normalization.
Finally, we trained an SPLDA model on all out-of-domain
data and adapted it to the in-domain data.

Back-end hyperparameters were tuned based on the test
(SRE21 or SRE24) and training setups (SRE24 fixed/open or
SRE21). SRE24 Dev was split into two folds, with back-end
adaptation on one fold and evaluation on the other, yielding
fold scores. These hyperparameters were then used to train a
final back-end on the full SRE24 Dev, which we also evaluated
on SRE24 Dev (denoted as cheat scores) and SRE24 Eval.
This resulted in three back-ends (fold0, fold1, and cheat).
SRE24 hyperparameters were selected based on fold scores.

F. MIT-LL Back-end
To handle diverse evaluation conditions, the MIT-LL back-

end used an ensemble of scoring pipelines. Each included

LDA (150 dim.), global centering, whitening, length normal-
ization, and SPLDA (100 speaker dim.). The pipelines were
adapted to each of the following conditions: Gender (Male,
Female), Source (CTS, AfV), Active Speech Duration (Short
(< 15s), Long (> 15s)) and Language (ENG, ARA, or
FRA). For each pipeline, Centering/whitening and PLDA
were first trained on out-of-domain data and adapted to in-
domain subsets. Fixed-condition systems used NIST SRE21
Eval and SRE24 Dev, while open-condition added SRE18-
CTS and SRE19-CTS.

The ensemble of scoring pipelines generated a 9-
dimensional score vector x. Target/non-target score vectors
were modeled by Gaussian mixture models with 2-3 com-
ponents and shared covariances. The final trial scores were
computed as the log-likelihood ratio

s = log
N (x;µT ,Σ)

N (x;µN ,Σ)
(2)

where the means and covariances were the Maximum Likeli-
hood estimates across the in-domain datasets.

G. Calibration and Fusion
As the MIT-LL back-end (Sec. III-F) produced well-

calibrated scores, no explicit calibration was applied. JHU
trained a condition-dependent calibration of scores s into log-
likelihood ratios as LLR = as+ b+wT

l l+wT
c c where a and

b are condition-independent scaling and bias; l, c,

l =

[
language-match=Y
language-match=N

]
c =

[
source-match=Y
source-match=N

]
(3)

are 1-hot vectors that indicate the language, and source
conditions, respectively; and wl, wc are trainable weights
representing condition-dependent biases.

We trained three of these calibrations on separate score sets
(fold0, fold1, and cheat) but found they did not generalize well
across sets, e.g., fold0 calibration was not good for fold1 or
cheat, so we were uncertain about the best calibration set for
the eval. Uncertain about the best calibration for evaluation,
we implemented a mixture of calibration functions. To this
end, we trained a six-component GMM on each non-calibrated
score set, reserving two Gaussians to model the target score
distribution and four for non-target. Denoting these GMMs as
p(s|fold0), p(s|fold1) and p(s|cheat), the final score was

LLR =
∑

t∈{fold0,fold1,cheat}

p(t|s)ft(s) , (4)

where s is the uncalibrated score, and ft are the calibration
functions trained on each score set.

In the post-evaluation analysis, we found that the Dev cheat
score distribution did not align with the Eval, leading to very
high Act. Cp. The proposed calibration mixture allowed us
to keep a reasonable Actual Cp. However, the best approach
would have been calibrating solely on the pooled fold scores.
Table I presents a comparison of different calibration strate-
gies on the SRE24 Eval set, including condition-independent
and condition-dependent variants, using cheat, fold, or mixed
calibration scores. For the Wav2Vec2+ECAPA-TDNN system,



TABLE II
AUDIO SYSTEMS RESULTS ON SRE21 DEV, SRE24 DEV FOLDS, SRE24 DEV FULL (CHEATING) AND SRE24 EVAL

System SRE21 Dev SRE24 Dev Folds SRE24 Dev Full SRE24 Eval

Idx Embed. BE Calib. EER Min Cp Act Cp EER Min Cp Act Cp EER Min Cp Act Cp EER Min Cp Act Cp

Single Fixed
1f FwSE-Res2Net50-WB JHU Eval 3.97 0.351 0.405 8.31 0.617 0.638 3.01 0.372 0.520 7.81 0.632 0.681
1f-p Post 8.23 0.610 0.617 3.09 0.381 0.587 7.76 0.632 0.635
2f FwSE-Res2Net50-NB JHU Eval 2.95 0.297 0.404 8.26 0.641 0.655 3.30 0.477 0.593 7.94 0.631 0.652
2f-p Post 8.32 0.648 0.650 3.41 0.489 0.658 7.94 0.628 0.629
3f FwSE-ReNet100-WB JHU Eval 4.18 0.369 0.402 7.55 0.556 0.568 2.25 0.322 0.421 7.13 0.612 0.709
3f-p Post 7.53 0.563 0.567 2.26 0.326 0.485 7.09 0.608 0.623
4f FwSE-ResNet100-NB JHU Eval 3.47 0.326 0.368 7.58 0.568 0.589 2.33 0.319 0.446 6.90 0.569 0.613
4f-p Post 7.51 0.571 0.575 2.37 0.324 0.518 6.85 0.565 0.566
5f FwSE-ReNet100-WB MIT-LL Eval 5.01 0.389 0.959 10.95 0.637 0.644 4.07 0.388 0.544 9.69 0.716 0.784
6f FwSE-ResNet100-NB MIT-LL Eval 4.87 0.366 0.934 9.41 0.643 0.657 3.76 0.403 0.522 8.69 0.652 0.681
7f FwSE-Res2Net50-WB MIT-LL Eval 6.89 0.453 1.715 8.78 0.594 0.601 3.42 0.372 0.516 8.81 0.671 0.686
8f FwSE-Res2Net50-NB MIT-LL Eval 7.78 0.459 0.716 9.29 0.632 0.646 3.78 0.419 0.577 8.38 0.626 0.628

Single Open
1o W2V2-ECAPA-TDNN JHU Eval 3.50 0.322 0.404 5.08 0.319 0.321 2.56 0.244 0.376 4.42 0.377 0.457
1o-p Post 5.03 0.327 0.333 2.59 0.264 0.416 4.31 0.374 0.395
2o FwSE-Res2Net50-WB-Std JHU Eval 2.67 0.314 0.384 6.15 0.416 0.419 1.61 0.198 0.322 5.33 0.500 0.668
2o-p Post 6.46 0.471 0.484 2.86 0.352 0.624 5.22 0.485 0.486
3o FwSE-Res2Net50-WB-NoCodec JHU Eval 2.64 0.312 0.384 6.13 0.428 0.434 1.51 0.198 0.321 5.26 0.499 0.678
4o FwSE-ResNet100-WB JHU Eval 3.55 0.379 0.423 6.27 0.419 0.422 2.45 0.302 0.544 5.04 0.446 0.473
4o-p Post 6.17 0.424 0.442 2.53 0.309 0.600 4.88 0.444 0.445
5o Res2Net50-SRE21 JHU Eval 1.92 0.260 0.332 6.03 0.433 0.434 2.68 0.331 0.599 5.29 0.450 0.456
5o-p Post 5.73 0.428 0.441 3.01 0.357 0.628 5.04 0.444 0.445
6o ECAPA-TDNN-SRE21 JHU Eval 2.64 0.329 0.386 7.60 0.505 0.507 4.37 0.407 0.644 6.65 0.555 0.559
6o-p Post 7.46 0.511 0.524 4.73 0.433 0.671 6.51 0.551 0.553
7o FwSE-ResNet100-WB MIT-LL Eval 1.73 0.267 0.640 9.35 0.611 0.639 4.13 0.329 0.489 6.63 0.577 0.623
8o W2V2-ECAPA-TDNN MIT-LL Eval 1.36 0.237 0.301 7.41 0.434 0.439 1.75 0.210 0.243 5.81 0.483 0.484

Submissions Fixed
Primary: 3f+4f+5f+1f+6f 6.30 0.486 0.490 1.49 0.237 0.408 5.96 0.547 0.574
Contrastive: 3f+4f+5f+1f+6f+2f+8f+7f 6.19 0.483 0.483 1.50 0.238 0.413 5.93 0.542 0.568
Single: 3f 7.55 0.556 0.568 2.25 0.322 0.421 7.13 0.612 0.709
Primary-Post: 1f-p+2f-p+3f-p+4f-p 6.19 0.499 0.505 1.58 0.257 0.436 5.85 0.530 0.541
Single-Post: 3f-p 7.53 0.563 0.567 2.26 0.326 0.485 7.09 0.608 0.623

Submissions Open
Primary: 1o+2o+5o+4o+7o 4.40 0.249 0.252 1.22 0.161 0.381 3.60 0.318 0.366
Contrastive: 1o+2o+5o+4o+7o+6o+3o+8o 4.31 0.251 0.254 1.36 0.170 0.399 3.67 0.324 0.387
Single: 1o 5.08 0.319 0.321 2.56 0.244 0.376 4.42 0.377 0.457
Primary-Post: 1o-p+2o-p+4o-p+5o-p 4.16 0.260 0.264 1.50 0.187 0.418 3.37 0.308 0.331
Single-Post: 1o-p 5.03 0.327 0.333 2.59 0.264 0.416 4.31 0.374 0.395

calibration with cheat scores resulted in an Actual Cp of 1.04,
whereas calibrating on fold scores reduced it substantially to
0.395, and the mixture approach yielded 0.457. The results
also show that condition-dependent calibration improved Ac-
tual Cp across individual systems on SRE24 Eval by 2–13%
relative, compared to condition-independent calibration.

Fusion was trained using calibrated scores from SRE24 Dev
fold0 and fold1 through a greedy selection strategy [9], [12].
We first calibrated all individual systems and selected the one
with the lowest actual cost. Then, additional systems were
iteratively added, each time choosing the combination that
yielded the best performance. Fusion training was performed
at PT = 0.01, with system selection guided by the average
Actual DCF computed at PT = 0.01 and PT = 0.005.

H. Audio Submissions
Table II summarizes the results for our single systems and

submissions under fixed and open conditions. EER and Cpri-
mary are equalized across common conditions (Gender(M/F),
Source-Match (Y/N), Language-Match (Y/N)) following the

NIST SRE primary metric. This ensures all conditions con-
tribute equally to the metrics. At evaluation time, the systems
based on JHU back-end used the Mixture of calibrations
described in Section III-G. At post-evaluation (systems de-
noted as xx-p), we calibrated the system only on the fold
cross-validation scores. This post-eval calibration consistently
improved Act Cp for all single systems in both fixed and open
conditions. The Primary and Contrastive submissions indicate
which systems were included in the fusion and the order in
which they were selected by the greedy algorithm. We report
both the original submissions and the hypothetical ones using
the post-eval systems.

In the fixed condition, narrowband (NB) models slightly
outperformed wideband (WB) models on average, with an
Act Cp of 0.626 compared to 0.677 (7% relative difference).
ResNet100 models performed comparably to Res2Nets, show-
ing only a 2% relative difference. Notably, the best single sys-
tem on Eval was ResNet100-NB, outperforming ResNet100-
WB—the best on Dev—by 14%. Primary and Contrastive
fusions further reduced Act Cp by 19% and 20%, respectively,



TABLE III
GENDER, SOURCE AND LANGUAGE ABLATION ON SRE24 EVAL

Primary-Post Fixed Primary-Post Open

Cond. EER Min Cp Act Cp EER Min Cp Act Cp

Global 5.85 0.530 0.541 3.37 0.308 0.331

Male 5.60 0.517 0.588 3.31 0.301 0.341
Female 5.60 0.471 0.495 3.44 0.305 0.320

Source-Match 4.68 0.388 0.439 2.98 0.237 0.269
Source-Mismatch 6.51 0.599 0.644 3.77 0.369 0.393

Lang-Match 5.37 0.471 0.527 3.16 0.279 0.311
Lang-Mismatch 5.83 0.517 0.556 3.59 0.327 0.350

helping correct miscalibration in single systems and narrowing
the gap between Min and Act Cp. The post-eval Primary
achieved a 5% relative improvement over the original Primary,
benefiting from better-calibrated single systems.

In the open condition, models trained on SRE21 performed
as well as, or better than, newer models. No significant differ-
ences were observed between networks trained with or without
codec augmentation. Wav2Vec2+ECAPA-TDNN achieved the
lowest Min Cp, though slight miscalibration placed its Act
Cp close to that of ResNet100 and Res2Net50. However,
with post-eval calibration, Wav2Vec2+ECAPA-TDNN outper-
formed the best ResNet100 and Res2Net models by 11%
relative. The Primary fusion improved Act Cp by 20% over
the best single system. After post-eval calibration, this gain
was reduced to 16%. The Primary open system outperformed
the Primary fixed system by 36% (Eval) to 38% (Post-eval).
This result suggests that fixed condition performance was
limited by the scarcity of AfV data, which was available
only from SRE21. These findings underscore our continued
reliance on VoxCeleb data to achieve strong performance in
AfV scenarios.

I. Analysis of Gender, Source and Language

Table III presents an ablation study on the impact of
Gender, Source, and Language on the results of the post-
eval Primary systems. Metrics are equalized across SRE
common conditions, e.g., to compute the gender results, we
equalize the weights of source-match/mismatch and language-
match/mismatch to ensure the result is independent of the
proportion of trials of type. The table shows that, despite
improved post-eval calibration, calibration gaps remain across
common conditions. These results suggest that further gains
could be achieved by narrowing these gaps through more
effective condition-dependent calibration.

Regarding gender, male and female had similar EER.
However, female trials were significantly better in terms of
Act Cp (15% in fixed, 6% in open), partly due to a larger
calibration gap in male trials. As for source, the performance
gap between source-match and mismatch trials was the largest
among all factors, exceeding the differences between genders
and between language-match/mismatch. This trend appears not
only in the fixed condition, which has limited AfV training
data, but also in the open condition, which includes balanced

CTS and AfV training. In the fixed setup, source-mismatch
trials had an Act Cp 47% higher than source-match; in the
open, the gap was 46%. Thus, adding VoxCeleb data improved
performance for both source conditions but did not reduce
the gap. Regarding language, mismatched trials increased Act
Cp by only 5–12%, which is substantially smaller than the
source mismatch effect and comparable to the gender-based
difference.

IV. VISUAL SYSTEMS

A. Pre-Trained Detector and Embedding Extractor
We sampled video frames at 3 frames-per-second (FPS),

which allowed us to compensate for the posterior removal of
low-quality frames. Face detection was performed using a pre-
trained RetinaFace R507 model with a decreasing detection
threshold, ensuring that faces are detected across varying
quality levels. Detected faces were aligned with the facial
landmarks and then embedded using a ResNet-100 trained
with Subcenter ArcFace loss on the WiderFace dataset8.

B. Post-Processing for Low-Quality Image Removal
Improving over previous evaluations, we ensure that only

high-quality embeddings are retained by estimating a quality
vector (q = [deye, black-ratio]) for each detected face, resulting
in relative gains of around 7%. The Eye Distance deye reflects
the relative size of the detected face, with larger and well-
proportioned faces generally yielding higher values. First, we
discard faces with eye distance lower than the maximum eye
distance in the video divided by two.

The Black Pixel Ratio refers to the proportion of black
pixels in the cropped image. These black pixels typically
appear along the image borders when the user is not facing
the camera or when facial landmarks are poorly detected.
A higher black pixel ratio signifies lower quality. A second
filtering stage selects face embeddings with black-ratio < tthr
by iteratively applying thresholds tthr ∈ {0.1, 0.25, 0.5} until
the number of valid embeddings is larger than a minimum (set
to 3). Typically, more than 5 valid embeddings are found.

C. AHC+Cosine Back-end
We used cosine similarity as the metric for comparing face

embeddings. The embeddings from the test video were clus-
tered using agglomerative clustering (AHC) with a stopping
threshold tAHC, assuming clusters correspond to different indi-
viduals or face orientations. Finally, we scored each enrollment
embedding against all cluster centers in the test video and
selected the maximum score.

D. Calibration and Fusion
Visual systems were calibrated and fused using linear

logistic regression on SRE21 Visual Dev+Eval and SRE24
Dev. The Single system used a single AHC+cosine back-
end with tAHC = 0.7 on ResNet100 face embeddings.
The primary fusion combined three back-ends with tAHC ∈
{0.5, 0.6, 0.7}, while the contrastive included back-ends with
tAHC ∈ {0.6, 0.7}.

7https://github.com/deepinsight/insightface/tree/master/model\ zoo
8http://shuoyang1213.me/WIDERFACE/WiderFace Results.html



TABLE IV
VISUAL SYSTEMS RESULTS ON SRE21 AND SRE24 VISUAL

System SRE 21 Visual dev SRE21 Visual eval SRE 24 Visual dev SRE 24 Visual Eval

EER Min Cp Act Cp EER Min Cp Act Cp EER Min Cp Act Cp EER Min Cp Act Cp

Submissions
Primary 2.38 0.082 0.123 2.03 0.114 0.119 1.47 0.050 0.105 2.07 0.149 0.169
Contrastive 2.43 0.082 0.122 2.05 0.114 0.119 1.56 0.063 0.106 2.14 0.152 0.170
Single 2.35 0.079 0.122 2.10 0.114 0.119 1.56 0.058 0.105 2.10 0.152 0.170

TABLE V
SYSTEMS RESULTS ON SRE24 AUDIO-VISUAL

System SRE24 AV Dev SRE24 AV Eval

EER Min Cp Act Cp EER Min Cp Act Cp

Fixed Single
Audio Single 2.77 0.322 0.483 8.96 0.738 0.772
Visual Single 1.56 0.058 0.105 2.10 0.152 0.170
AV Single 0.63 0.025 0.037 1.32 0.112 0.113

Fixed Primary
Audio Primary 1.99 0.217 0.429 6.99 0.638 0.654
Visual Primary 1.47 0.050 0.105 2.07 0.149 0.169
AV Primary 0.59 0.014 0.030 1.13 0.100 0.101
AV Contrastive 0.59 0.015 0.030 1.13 0.100 0.100

Open Single
Audio Single 4.36 0.395 0.55 6.15 0.508 0.540
Visual Single 1.56 0.058 0.105 2.10 0.152 0.170
AV Single 0.42 0.028 0.069 1.00 0.095 0.098

Open Primary
Audio Primary 2.07 0.257 0.571 4.18 0.389 0.415
Visual Primary 1.47 0.050 0.105 2.07 0.149 0.169
AV Primary 0.27 0.010 0.061 0.83 0.086 0.087
AV Contrastive 0.26 0.011 0.069 0.84 0.087 0.089

E. Visual Submissions and Results
Table IV shows the results of the visual systems on SRE21

Visual Dev and Eval, and SRE24 Visual Dev. The primary
fusion did not yield a significant gain over the single system.

V. AUDIO-VISUAL SUBMISSIONS AND RESULTS

Assuming well-calibrated log-likelihood ratios and indepen-
dence between audio and visual modalities, the audio-visual
fusion log-likelihood ratio was obtained by summing the audio
and visual scores. The primary and contrastive submissions
fused their respective Primary or Contrastive audio systems
with the Primary visual systems, while the Single submissions
combined Single audio and visual systems.

Table V presents results comparing single-modality Post-
Eval Single and Primary systems to Audio-Visual Single and
Primary fusions. Note that in the Audio-only modality, NIST
primary metrics were calculated using equalized source-Match
and mismatch Trials. In contrast, for the Audio-Visual modal-
ity, the NIST primary metric includes only source-mismatch
trials and excludes source-matched trials. This explains why
the Audio system results shown in Table V appear worse than
those reported in Table II for the Audio modality.

In the fixed and open conditions, AV Single improved Act
Cp by 85% and 82% over the Audio-only Single, and by
34% and 42% over Visual-only Single. Similarly, AV Primary

improved Act Cp by 83% and 82% over Audio-only Primary,
and by 40% and 42% over Visual-only Primary. These results
highlight the complementarity between modalities. Despite
the visual modality outperforming the audio modality, it still
benefited significantly from integrating audio information.

VI. CONCLUSION AND DISCUSSION

We presented the JHU-MIT systems for NIST SRE24.
For the audio fixed condition, the system used Res2Net50
and ResNet100 embeddings, while the open condition also
included an ECAPA-TDNN with a multilingual Wav2Vec2
front-end, which was the best single system. The audio back-
ends were either PLDA adapted to SRE24 Dev or a mixture of
PLDA models adapted to various evaluation sub-conditions. To
prevent overfitting, we used two-fold cross-validation to tune
back-end adaptation hyperparameters. For the visual condi-
tions, we employed pre-trained ResNet100 face embeddings
with cosine scoring back-ends. Agglomerative clustering was
applied to group speaker and face identities in multi-speaker
test videos.

We learned key lessons from this evaluation. ResNet100
and Res2Net performed comparably, with narrowband models
slightly outperforming wideband in the fixed condition. Vox-
Celeb data remained essential for strong AfV performance–
its absence severely degraded fixed-condition results. Source-
mismatch trials caused the most severe performance drop, even
when AfV data was included in training, while gender and
language mismatches had a smaller impact. Although AfV data
in the open condition improved both source-matched and mis-
matched trials, the performance gap between them remained
nearly unchanged. Large-margin and Wav2Vec2 fine-tuning
tended to overfit to out-of-domain data, reducing performance
on Tunisian data compared to networks without fine-tuning.
Optimizing fine-tuning hyperparameters, such as learning rates
and early stopping, required extensive experimentation. Di-
arization had minimal impact on performance, while source-
and language-dependent calibration proved beneficial. Cross-
validation scores provided more reliable calibration than cheat-
ing scores (from back-end trained on full SRE24 Dev) or
mixture of calibrations, with condition-dependent strategies
reducing Act Cp by up to 13% relative. Audio fusion improved
results by approximately 20% and mitigated the effects of sub-
optimal calibration. Visual performance was further improved
by filtering low-quality frames. Audio-visual fusion yielded
substantial gains, improving over the audio-only system by
85% and the video-only system by 34-40%.
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